SS-V: 1140 Stress Concentration of Filleted Bar

Test No. VS15 Find maximum normal stress for two configurations of a filleted bar.

Definition

Figure 1.


Stress concentration is given by:

σ = K t *   σ o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaeyypa0Jaam4sa8aadaWgaaWcbaWdbiaadshaa8aabeaa k8qacaGGQaGaaiiOaiabeo8aZ9aadaWgaaWcbaWdbiaad+gaa8aabe aaaaa@3FF2@

The following table outlines the two configurations of the loads on the bar.
Table 1.
Dimension Configuration 1 Configuration 2
D 33 mm 45 mm
d 30 mm 30 mm
r 1.5 mm 6 mm
t 2 mm 2 mm
D/d 1.10 1.50
r/d 0.05 0.20
Kt ~2 ~1.75
The material properties are:
Properties
Value
Modulus of Elasticity
2.1e+11 Pa
Poisson's Ratio
0.3

Results

Run SimSolid analysis with 3 adaptive passes, Adapt to features and thin solids on. The following table summarizes the stress results.
Reference SimSolid % Difference
Max Prin. Stress - Configuration 1 2.00 1.89 -5.50%
Max Prin. Stress - Configuration 2 1.80 1.84 2.22%
1 Shigley’s Mechanical Engineering Design, Appendix A, Figure A-15-5, McGraw Hill, 2016